

MARCH-12 ZELIGSOFT TRAINING AND EDUCATION PAGE 1 OF 8

Unified Modeling Language (UML)

Duration 3 days (extendable to 4 days)
Audience: Software architects, development team managers, project managers,

product managers, software developers, programmers, technical writers

Pre-requisites: Participants should be familiar with the basic principles of software
engineering and have some experience with object-oriented programming

Brief Description: The intent of the course is to provide attendees with a solid understanding
of UML and how it can be used. This course covers most of the UML
standard, although it places greater emphasis on those elements of UML
that are more frequently used in industrial practice.

Description:
This course covers most of the UML standard, although it places greater emphasis
on those elements of UML that are more frequently used in industrial practice. All
topics are illustrated using practical examples, and, where time and resources
permit, lab exercises are included using actual computer-based UML authoring tools
(e.g., StarUML, Papyrus, IBM RSA, IBM Rhapsody).

Reduced versions of the course are also based on this outline but with more
advanced units or advanced topics within specific units omitted. The latter are
identified by italics.

The instructor was a member of the UML 1 and UML 2 core design teams.

Target Audience
Software architects, development team managers, project managers, product
managers, software developers, programmers, and technical writers

Course Level
Intermediate

Course Pre-requisites
Participants should be familiar with the basic principles of software engineering and
have some experience with object-oriented programming

MARCH-12 ZELIGSOFT TRAINING AND EDUCATION PAGE 2 OF 8

Course Objectives

The intent of the course is to provide attendees with a solid understanding of UML
and how it can be used. Because significant emphasis is placed on explaining the
rationale behind the language and its constructs, attendees are likely to come away
with a much deeper insight and greater ability to use UML than can be obtained
from reading most popular textbooks or attending other UML courses. This applies
even for slimmed down versions of the course.

Course Outline:

1. UNIT: Introduction to Model-Based Engineering (MBE) of

Software and Systems

This context-setting unit introduces the basic concepts of model-based
engineering and describes how these are applied to the development of modern
complex software-intensive systems. The role of MBE in both traditional
software development processes and more recent agile methods is discussed.
Relevant technologies (languages and tools) and standards are also discussed. A
brief overview of industrial experience with MBE is also provided.

2. UNIT: Introduction to UML

2.1. Lecture

This unit provides a general overview of UML and related technologies:

 What is UML?

 History and evolution of the UML standard

 How UML is used in practice

 The meaning of UML models

 General principles of the UML language

 The architecture and key components/diagrams of the UML language

 Example UML model

 UML tools overview

2.2. Lab

Hands-on lab that introduces a UML authoring tool of choice.

MARCH-12 ZELIGSOFT TRAINING AND EDUCATION PAGE 3 OF 8

3. UNIT: Requirements modeling with UML

3.1. Lecture

This is an introduction to the use-case concept embedded within UML:

 An overview of methods of specifying system requirements in industrial

practice

 An introduction to use cases as a means for specifying requirements

 UML use case diagrams (concepts: actor, use case, use case extension, use

case inclusion)

 Practical methods of exploiting use case diagrams (with examples)

3.2. Lab

Using a UML authoring tool of choice to capture sample system requirements
with use case diagrams

4. UNIT: Modeling Structure with UML – Part I: Class diagrams

This unit provides an in-depth introduction to the most frequently used type of
UML diagram, the class diagram.

4.1. Lecture

This lecture introduces the core structure modeling concepts of UML and
describes how they are represented using UML; simple illustrative examples are
used throughout

 Core structural concepts: value, data structure, object (identity), link,

attribute, operation

 UML object (instance) diagrams

 Basic class diagram concepts: class, data type, association, multiplicity

 How to correctly interpret UML class diagrams (and how not to interpret

them)

4.2. Lab

Hands on: basic class modeling using a UML authoring tool of choice

4.3. Lecture

This lecture introduces more advanced class modeling concepts

MARCH-12 ZELIGSOFT TRAINING AND EDUCATION PAGE 4 OF 8

 Composition and aggregation associations

 N-ary associations, association classes

 Supplementary concepts: constraint, dependency

 The concept of classification: UML generalizations/specialization

(inheritance), classifier concept

 UML interfaces

 UML flow modeling information flow, item)

5. UNIT: Organizing UML models

This unit covers ways of organizing UML models into modules via the package
mechanism

5.1. Lecture

 UML package diagrams (concepts: namespaces, package import, element

import, visibility, package containment, UML models, model libraries)

6. UNIT: Modeling Structure with UML – Part II: Composite

structure diagrams

This unit covers composite structure diagrams (collaboration, structured class),
which are particularly useful for modeling technical systems and software
architectures.

6.1. Lecture

This lecture covers the concept of generalized instance modeling and contrasts it
with class modeling

 Limitations of class diagrams for modeling structure

 UML collaboration concepts and collaboration diagrams (role,

connectors, collaborations, collaboration uses)

 Modeling design patterns with UML collaborations

 UML structured class modeling (port, part, internal structure)

 Composite structure and generalization

6.2. Lab

Hands on: basic class modeling using a UML authoring tool of choice (but ones
that support composite structure modeling – not all do)

MARCH-12 ZELIGSOFT TRAINING AND EDUCATION PAGE 5 OF 8

7. UNIT: Modeling Behaviour with UML – Part I: Actions and

Activity diagrams

This unit first introduces the relationship between structure and behaviour in
UML and the model of causality in UML (i.e., how things happen in UML). It then
introduces the basic unit of behaviour: a UML action and then explains how
these are combined. The recently-adopted UML action language is also briefly
discussed. Finally, it explains the basic concepts of UML activity diagrams.

7.1. Lecture

 The run-time semantics of UML (how things happen in UML)

 Active and passive objects in UML; run-to-completion semantics of active

objects

 UML actions and their composition into UML program units (action, data

flow, control flow)

 A brief introduction to the UML action language (ALF)

 UML activities and activity diagrams (activity, structured activity, data

store, swimlane)

7.2. Lab

Hands-on exercises with UML activity diagrams using simple examples

8. UNIT: Modeling Behaviour with UML – Part II: Interactions

This unit covers the three principal forms of UML interaction diagrams typically
used to model interactions between multiple collaborating objects

8.1. Lecture

 Interaction diagram types

 Interaction diagram concepts (lifeline, event, event occurrence, message,

execution occurrence)

 Sequence diagram essentials (interaction frame, interaction occurrence)

 Combined fragment types and their use

 Timing diagrams

 Communication diagrams

 Interaction overview diagrams

MARCH-12 ZELIGSOFT TRAINING AND EDUCATION PAGE 6 OF 8

8.2. Lab

Hands on: basic sequence diagram exercise

9. UNIT: Modeling Behavior with UML – Part III: State machine

diagrams

This unit describes how statecharts can be used to capture event-driven
behaviours. The concepts are all illustrated with numerous practical examples

9.1. Lecture

 Basic state machine semantics; run-to-completion

 Basic state machine diagram concepts: states, transitions, triggers,

guards, transition behaviours

 Advanced UML statechart concepts: hierarchical states, group transitions,

entry/exit/do behaviours, completion transitions, pseudostates, triggering

rules

 Orthogonal regions modeling with UML statecharts (region, completion

transition)

 Submachines

 Statechart specialization

9.2. Lab

Hands-on exercise of statechart modeling using a UML authoring tool of choice

10. UNIT: Advanced UML Techniques – Part I: OCL

OCL is a language supported by many tools which is used to specify constraints

10.1. Lecture

 OCL and UML class diagrams

 Introduction to basic first-order logic

 OCL Basics and OCL data types

 OCL collection types and collection-based constraints

 Using OCL in practice

MARCH-12 ZELIGSOFT TRAINING AND EDUCATION PAGE 7 OF 8

10.2. Lab

Whiteboard exercises writing OCL constraints using simple examples

11. UNIT: Advanced UML Techniques – Part II: Templates

UML templates are used to produce generic models that can be customized to fit
specific situations.

11.1. Lecture

 The concept of templates in software

 UML classifier templates (template, template parameter, template

signature, template binding)

 UML package templates

12. UNIT: Advanced UML Techniques – Part III: Profiles

UML profiles are used to customize UML to fit a specific problem or domain while
retaining the ability to use general UML authoring tools.

12.1. Lecture

 Why specialize UML and how?

 The UML metamodel and the Meta-Object Facility (MOF)

 Basic profile concepts (stereotype, profile, model library)

 Profile definition design patterns and methods

12.2. Tutorial

Example of practical profile definition using (illustrated by instructor using a
specific UML tool).

13. UNIT: Advanced UML Modeling – Part IV: The MARTE

profile

The MARTE profile of UML complements standard UML by providing the ability
to specify quantitative information such as quality of service data into UML
models. This lecture-only unit is mostly intended for designers of real-time and
embedded software systems, who may need to make precise predictions on the
key performance indicators of their designs (e.g., timeliness, response time,
schedulability, etc.).

MARCH-12 ZELIGSOFT TRAINING AND EDUCATION PAGE 8 OF 8

13.1. Lecture

 The rationale and purpose of MARTE: Software and platforms

 Core MARTE concepts: quality of service, resource, physical types

 MARTE Value Specification Language (VSL)

 Using MARTE to model computing platforms and applications that are Qos-

and resource constrained

 Using MARTE for analysis

 Extending MARTE

14. UNIT: An Introduction to SysML

SysML is a standardized profile of UML that is used for general systems
modeling, including the modeling of various kinds of physical systems (e.g.,
electronics, mechanical systems, hydraulic systems, software, etc.). It is often
combined with UML to specify embedded or cyber-physical systems that include
software as well as hardware of various types. This lecture-only unit is only used
to provide a brief (1- to 2- hour) introduction to SysML. Knowledge of UML is a
pre-requisite since SysML builds on top of UML.

14.1. Lecture

 The rationale and purpose of SysML

 Relationship between SysML and UML

 Basic SysML diagram types and formats

 Modeling structure with SysML: blocks, block definition diagrams, internal

block diagrams, ports and flows

 SysML requirements diagrams

 SysML allocations

 SysML parametrics

 SysML and MARTE

